SECURITY

L‘J BLOCKHAT

Step-by-Step Explanation:
1. Function Declaration:

function renounceLockOwnership(uint256 lockId) external {

- This declares the function renounceLockOwnership which takes a single
argument lockId of type uint256.

2. Call to transferLockOwnership:
transferLockOwnership(lockId, address(@));

- The function calls another function transferLockOwnership, passing lockId
and address(@) as arguments.

- address(0) is the zero address in Ethereum, a special address used to
represent the absence of an owner.

transferLockOwnership Function:

To fully understand the impact of this call, we need to look at the transferLockOwnership
function:

function transferLockOwnership(uint256 lockId, address newOwner) public
validLock(lockId) {

Lock storage userLock = locks[_getActualIndex(lockId)];

address currentOwner = userlLock.owner;

require(currentOwner == msg.sender, "You are not the owner of this
lock™);

userLock.owner = newOwner;

CumulativelockInfo storage tokenInfo =
cumulativelockInfo[userLock.token];
bool isLpToken = tokenInfo.factory != address(9);

if (isLpToken) {
_userlLpLockIds[currentOwner].remove(lockId);
_userLpLockIds[newOwner].add(lockId);



} else {
_userNormalLockIds[currentOwner].remove(lockId);
_userNormalLockIds[newOwner].add(lockId);

}

emit LockOwnerChanged(lockId, currentOwner, newOwner);

Step-by-Step Explanation of transferLockOwnership:
1. Function Declaration and Modifier:

function transferLockOwnership(uint256 lockId, address newOwner) public
validLock(lockId) {

- This function is public and takes two arguments: lockId and newOwner.
- ThevalidLock(lockId) modifier ensures that the lockId is valid.

2. Retrieve Lock Information:
Lock storage userLock = _locks[_getActualIndex(lockId)];

- The function retrieves the lock information from the _locks array using the
lockId.

3. Check Ownership:
address currentOwner = userlLock.owner;
require(currentOwner == msg.sender, "You are not the owner of this
lock");

- It checks that the caller (msg.sender) is the current owner of the lock.

4. Transfer Ownership:
userLock.owner = newOwner;

- The function sets the owner of the lock to newOwner.

5. Update User Lock IDs:

CumulativelLockInfo storage tokenInfo =
cumulativelockInfo[userLock.token];



bool isLpToken = tokenInfo.factory != address(9);

if (isLpToken) {
_userlLpLockIds[currentOwner].remove(lockId);
_userLpLockIds[newOwner].add(lockId);

} else {
_userNormalLockIds[currentOwner].remove(lockId);
_userNormallLockIds[newOwner].add(lockId);

- Itupdates the mappings that keep track of lock IDs for users.
- Ifthe token is an LP token, it updates _userLpLockIds.
- Ifthe token is a normal token, it updates _userNormallLockIds.

Impact of renounceLockOwnership:

By calling transferLockOwnership with newOwner set to address(0), the
renounceLockOwnership function makes the lock ownerless. Since address (@) cannot take
any actions, the funds in the lock are effectively frozen and can never be unlocked or
transferred again. This is why calling renounceLockOwnership locks the funds permanently.



