» BLOCKHAT

SECURITY

Rewardo Token

Smart Contract Security Audit

Prepared by BlockHat
April 91", 2024 - April 14", 2024
BlockHat.io
contact@blockhat.io

Document Properties

Client Rewardo Token
Version 0.1
Classification Private
Scope

The Rewardo Token Contractin the Rewardo Token Repository

Link

Address

https://etherscan.io/address/0x797091E1f6c9Ce
TBEb7dd6Ffle4e4fBDe8fc0AD6

0x797091E1f6c9Ce7BEb7dd6Ffle4e4fBDe8fc0AD6

Contacts

COMPANY CONTACT

BlockHat contact@blockhat.io

Contents

1 Introduction 4
1.1 AboutRewardoToken 4
1.2 Approach &Methodology 4

121 RiskMethodology 5

2 Findings Overview
21 SUMMArY . . . e e e
22 KeyFindings

3 Finding Details 7
A tokenwssol. 7

Al Non-Withdrawable Ether Generated swapAndLiquify Function [HIGH] 7
A2 Useof Outdated ERC20 Implementation [JEOW] 8
A3 Unnecessary Override in _beforeTokenTransfer Function - 8
4 Static Analysis (Slither) 10
5 Conclusion 34

Post-audit notes by Rewardo

Team in the end of this report.

1 Introduction

Rewardo Token engaged BlockHat to conduct a security assessment on the Rewardo To-
ken beginning on April 9", 2024 and ending April 14!, 2024. In this report, we detail our
methodical approach to evaluate potential security issues associated with the implemen-
tation of smart contracts, by exposing possible semantic discrepancies between the smart
contract code and design document, and by recommending additionalideas to optimize the
existing code. Our findings indicate that the current version of smart contracts can still be
enhanced further due to the presence of many security and performance concerns.
This document summarizes the findings of our audit.

1.1 About Rewardo Token

Issuer Rewardo Token

Website https://www.rewardotoken.com
Type Solidity Smart Contract

Audit Method Whitebox

1.2 Approach & Methodology

BlockHat used a combination of manual and automated security testing to achieve a
balance between efficiency, timeliness, practicability, and correctness within the audit’s
scope. While manual testing is advised for identifying problems in logic, procedure, and
implementation, automated testing techniques help to expand the coverage of smart
contracts and can quickly detect code that does not comply with security best practices.

1.21 Risk Methodology

Vulnerabilities or bugs identified by BlockHat are ranked using a risk assessment tech-
nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-
work is effective at conveying the features and consequences of technological vulnerabili-
ties.

Its quantitative paradigm enables repeatable and precise measurement, while also re-
vealing the underlying susceptibility characteristics that were used to calculate the Risk
scores. Arisk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-
ing the greatest possibility or impact.

— Likelihood quantifies the probability of a certain vulnerability being discovered and
exploited in the untamed.

— Impact quantifies the technical and economic costs of a successful attack.

— Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-
spond to high, medium, and low, respectively. Severity is determined by probability and im-
pact and is categorized into four levels, namely Critical, High, Medium, and Low.

‘6 High
g Medium
— Low Medium
High Medium Low
Likelihood

2 Findings Overview

2.1 Summary

The following is a synopsis of our conclusions from our analysis of the Rewardo Token im-
plementation. During the first part of our audit, we examine the smart contract source code
and run the codebase via a static code analyzer. The objective here is to find known coding
problems statically and then manually check (reject or confirm) issues highlighted by the
tool. Additionally, we check business logics, system processes, and DeFi-related compo-

nents manually to identify potential hazards and/or defects.

2.2 KeyFindings

In general, these smart contracts are well-designed and constructed, but their
implementation might be improved by addressing the discovered flaws, which include ,

high-severity, 2 low-severity vulnerabilities.

tion

Vulnerabilities Severity | Status
Non-Withdrawable Ether Generated swapAndLiquify | HIGH Not fixed
Function

Use of Outdated ERC20 Implementation Not Fixed
Unnecessary Override in _beforeTokenTransfer Func- Not Fixed

Note: Please find post audit explanations

at the end of this audit.

3 Finding Details

A token.sol

A1 Non-Withdrawable Ether Generated swapAndLiquify
Function [HIGH]

Description:

Through the swapAndLiquify function, the contract acquires non-withdrawable ether by
converting half of its contractTokenBalance tokens to ether. The remaining half of the
tokens, along with a portion of the converted ether, are deposited into the -ether pool as
liquidity during the swap. With each call of the swapAndLiquify function, a small amount of
etheris leftin the contract because the token price decreases after swapping the first half
of tokens for ether. Additionally, the remaining half of tokens requires less converted
ether to be paired with it during liquidity addition. As a result, the contract does not seem
to offer any way to withdraw the acquired ether, which will remain locked within the
contract permanently.

Risk Level:

Likelihood -3
Impact-5

Recommendation:

We suggest adding a withdraw function within the contract to enable ether withdrawals.
Another option could be to distribute the ether proportionally to the token holders based on
the number of tokens they hold. Alternatively, the leftover ether could be used to purchase
tokens from the market to increase their price.

Status - Not fixed

A.2 Use of Outdated ERC20 Implementation [[EOW]|

Description:

The contractimplements its own version of the ERC20 standard, which may not include the
latest security practices, optimizations, and features found in widely-used libraries such
as OpenZeppelin's ERC20 implementation. Using an outdated or custom implementation
can introduce risks and compatibility issues with other contracts and decentralized appli-
cations (dApps).

Recommendation:

Replace the custom ERC20implementation with the latestversion of the ERC20token stan-
dard from areputable library such as OpenZeppelin. This not only ensures compliance with
the latest security practices but also benefits from the community’s scrutiny, ongoing main-
tenance, and updates.

Status - Not Fixed

A3 Unnecessary Override in _beforeTokenTransfer

Function-

Description:

The function _beforeTokenTransfer overrides aninherited function but does notimplement
any additionallogicbeyondthe parent class’simplementation. The function simply calls su-
per._beforeTokenTransfer(from, to,amount), directlyinvoking the inherited method without
modification. This redundant override could lead to confusion and increased maintenance
overhead without providing any functional benefit.

Code:

Listing 1: token.sol

Risk Level:

Likelihood -1
Impact -1

Recommendation:

It is advisable to remove the override of the _beforeTokenTransfer function if no additional
logicis required beyond what is implemented in the parent class

Status - Not Fixed

4 Static Analysis (Slither)

Description:

Block Hat expanded the coverage of the specific contract areas using automated testing
methodologies. Slither, a Solidity static analysis framework, was one of the tools used.
Slither was run on all-scoped contracts in both text and binary formats. This tool can be
used to test mathematical relationships between Solidity instances statically and
variables that allow for the detection of errors or inconsistent usage of the contracts’ APIs

throughout the entire codebase.

Results:

10

Conclusion:

Most of the vulnerabilities found by the analysis have already been addressed by the smart
contract code review.

33

5 Conclusion

We examined the design and implementation of Rewardo Token in this audit and found
several issues of various severities. We advise Rewardo Token team to implement the
recommendations contained in all 3 of our findings to further enhance the code’s security.
It is of utmost priority to start by addressing the most severe exploit discovered by the
auditors then followed by the remaining exploits, and finally we will be conducting a
re-audit following the implementation of the remediation plan contained in this report.

We would much appreciate any constructive feedback or suggestions regarding our
methodology, audit findings, or potential scope gaps in this report.

34

» BLOCKHAT

SECURITY

For a Smart Contract Audit, contact us at contact@blockhat.io

35

Post-audit notes:

Non-Withdrawable Ether Generated swapAndLiquify Function: We evaluated this finding, and found that
adding a Withdraw function would not do anything, since the contract has been renounced. We also
analyzed that the amount of Ether being burned is so small, so that it will not affect liquidity that much
as we go forward. Leaving as it is.

Use of Outdated ERC20 Implementation: We analyzed the potential security risks with this, and the
only one we found was that it might be a little more costly to use gas. Other security risks has been
cleared since the contract has been renounced. Leaving as is.

Unnecessary Override in _beforeTokenTransfer Function: This is related to the reward code in the
transaction. It does not pose any harm, and contract has been renounced. Leaving as is.

